
Pulumi

Pulumi

Oct 11, 2023

SYSTEM ARCHITECTURE

1 Pulumi Architecture Overview 3
1.1 The Deployment Engine . 3
1.2 State Storage Backends . 3
1.3 Language SDKs . 3
1.4 Resource Providers . 3
1.5 Package Schemas and Code Generators . 3

2 Resource Registration 5
2.1 The Resource Monitor . 5
2.2 The Step Generator . 7
2.3 The Step Executor . 9
2.4 Example Resource Registration Sequences . 9

3 Deployment Schema 11
3.1 Pulumi Deployment States . 11
3.2 Pulumi Property Value . 16
3.3 Pulumi Resource State . 21

4 Pulumi Type System 27
4.1 Primitive Types . 27
4.2 Object Types . 28
4.3 Promise<T> . 28
4.4 Output<T> . 28
4.5 Input<T> . 29
4.6 inputShape(T) . 29
4.7 outputShape(T) . 30
4.8 plainShape(T) . 31
4.9 Output<T> Combinators . 31

5 Importing Resources 33
5.1 import resource option . 33
5.2 pulumi import . 34

6 Resource Provider Implementer’s Guide 37
6.1 Provider Programming Model . 37
6.2 Schema . 39
6.3 Provider Lifecycle . 40
6.4 Custom Resource Lifecycle . 42
6.5 Component Resource Lifecycle . 47
6.6 Provider Functions . 47
6.7 CLI Scenarios . 47

i

6.8 Appendix . 48

7 Pulumi Package Metaschema 49
7.1 Properties . 49
7.2 Alias Definition . 53
7.3 Array Type . 54
7.4 Enum Type Definition . 54
7.5 Enum Value Definition . 55
7.6 Function Definition . 56
7.7 Map Type . 57
7.8 Named Type . 57
7.9 Object Type Definition . 58
7.10 Object Type Details . 58
7.11 Primitive Type . 59
7.12 Property Definition . 59
7.13 Resource Definition . 61
7.14 Token . 63
7.15 Type Definition . 63
7.16 Type Reference . 64
7.17 Union Type . 64

8 Building the Docs 67
8.1 Notes on Style . 67

ii

Pulumi

Welcome to the Pulumi developer documentation! This documentation provides details on Pulumi internals, including
but not limited to:

• How to build and test Pulumi

• Pulumi architectural details

• Specifications

Use the navigation bar to the left to browse the docs.

SYSTEM ARCHITECTURE 1

Pulumi

2 SYSTEM ARCHITECTURE

CHAPTER

ONE

PULUMI ARCHITECTURE OVERVIEW

Broadly speaking, Pulumi is composed of five components:

1. The deployment engine

2. State storage backends

3. Language SDKs

4. Resource providers

5. Package schemas and code generators

These components interact to provide the feature set exposed by the Pulumi CLI and SDKs, including desired-state
deployments using standard programming languages, remote state storage and secret encryption, and the ability to
bridge the gap between existing and Pulumi-managed infrastructure.

These components are composed like so:

In most cases, the language plugin, CLI, and resource providers will all live in separate processes, and each instance
of a resource provider will live in its own process.

1.1 The Deployment Engine

1.2 State Storage Backends

1.3 Language SDKs

1.4 Resource Providers

1.5 Package Schemas and Code Generators

3

Pulumi

4 Chapter 1. Pulumi Architecture Overview

CHAPTER

TWO

RESOURCE REGISTRATION

A Pulumi program declares the desired states of its stack’s resources by sending RegisterResource requests to the
Pulumi engine. Each RegisterResource request contains the type, name, and parent (if any) of the resource, a
reference to the provider instance that manages the resource (where an empty reference indicates that the resource
uses the default provider instance for its package + version), the values of the resource’s input properties, and any
options that apply to the resource. The engine decides what step to take in order to drive a resource to its goal state
by diffing the resource’s current state as present in the statefile with its desired state. If there is no current state,
the resource is created. Otherwise, the engine calls the resource’s provider’s Diff method to determine wither the
resource is unchanged, updated, or replaced. Once the required action (or actions, in the case of a replacement) has
been determined, the engine calls the resource’s provider’s Create, Update, or Delete methods to perform it. After
the action completes, the engine returns the new state of the resource to the Pulumi program.

Although we typically treat the engine as a single unit, in the case of resource registrations it helps to break it down
into a few of its internal components: the resource monitor, the step generator, and the step executor. Each of these
components is a participant in the response to a RegisterResourceRequest.

2.1 The Resource Monitor

The resource monitor provider serves the ResourceMonitor gRPC interface, and provides a shim between language
SDKs and the rest of the engine. There is a single resource monitor per deployment. As the engine’s feature set has
grown, the resource monitor has taken on responsibilities beyond its original use as a simple marshaling/unmarshaling
layer. It is now responsible for handling default providers (providers for resource registrations that do not reference a
provider instance) and for dispatching RegisterResourceRequests for multi-language components into appropriate
Construct calls.

When the resource monitor receives a resource registration, it does the following:

1. Unmarshals data from the gRPC wire format to the engine’s internal representation.

2. If the registration request does not name a provider instance, handles the resolution of the resource’s default
provider.

3. If the request is for a multi-language component, dispatches a Construct call to the component’s provider and
waits for the result.

4. If the request is not for a multi-langauge component, sends a RegisterResourceEvent to the step generator
and waits for the result.

5. Marshals the result of the Construct call or RegisterResourceEvent from the engine’s internal representa-
tion to the gRPC wire format and returns from the RPC call.

5

Pulumi

2.1.1 Default Providers

Default providers demand some amount of special attention. A default provider for a package and version is the provider
instance that is used for resources at that package and version that do not otherwise reference a provider instance when
they are registered. For example, consider the following program that creates an AWS S3 bucket:

import * as aws from "@pulumi/aws";

new aws.s3.Bucket("myBucket");

The constructor call will become a RegisterResourceRequest like:

RegisterResourceRequest{
type: "aws:s3/bucket:Bucket",
name: "myBucket",
parent: "urn:pulumi:dev::project::pulumi:pulumi:Stack::project",
custom: true,
object: {},
version: "4.16.0",

}

Because this request does not contain a value for the provider field, it will use the default provider for the aws package
at version 4.16.0. The resource monitor ensures that only a single default provider instance exists for each particular
package version, and only creates default provider instances if they are needed. Default provider instances are registered
by synthesizing an appropriate RegisterResourceEventwith input properties sourced from the stack’s configuration
values for the provider’s package. In the example above, the AWS default provider would be configured using any stack
configuration values whose keys begin with aws: (e.g. aws:region).

If we change the program slightly to create and reference a provider instance, the default provider will no longer be
used:

import * as aws from "@pulumi/aws";

const usWest2 = new aws.Provider("us-west-2", {region: "us-west-2"});

new aws.s3.Bucket("myBucket", {}, {provider: usWest2});

The constructor call will become a RegisterResourceRequest like:

RegisterResourceRequest{
type: "aws:s3/bucket:Bucket",
name: "myBucket",
parent: "urn:pulumi:dev::project::pulumi:pulumi:Stack::project",
custom: true,
object: {},
provider: "urn:pulumi:dev::vpc-2::pulumi:providers:aws::us-west-2::308b79ee-8249-

→˓40fb-a203-de190cb8faa8",
version: "4.16.0",

}

Note that this request does contain a value for the provider field.

6 Chapter 2. Resource Registration

Pulumi

2.2 The Step Generator

The step generator is responsible for processing RegisterResourceEvents from the resource monitor. The generator
implements the core logic that determines which actions to take in order to drive the actual state of a resource to its
desired state as represented by the input properties in its RegisterResourceEvent. In order to simplify reasoning
about the actual state of a stack’s resources, the step generator processes RegisterResourceEvents serially. It is
important to note that this approach puts the step generator on a deployment’s critical path, so any significant blocking
in the step generator may slow down deployments accordingly. In the case of updates, step generator latency is generally
insignificant compared to the time spent performing resource operations, but this is not the case for updates where most
resources are unchanged or for previews, which spend very little time in resource providers in general.

When the step generator receives a RegisterResourceEvent, it does the following:

1. Generate a URN for the resource using the resource’s type, name, and parent.

2. Look up the existing state for the resource, if any. If the event contains aliases for the resource, this includes
checking for existing state under those aliases. It is an error if a resource’s aliases match multiple existing states.

3. Pre-process input properties for ignored changes by setting any properties mentioned in the event’s ignore changes
list to their old value (if any)

4. If the event indicates that the resource should be imported, issue an ImportStep to the step executor and return.

5. Call the resource’s provider’s Check method with the event’s input properties and the resource’s existing inputs,
if any. The existing inputs may be used by the provider to repopulate default values for input properties that are
automatically generated when the resource is created but should not be changed with subsequent updates (e.g.
automatically generated names). Check returns a pre-processed bag of input values to be used with later calls to
Diff, Create, and Update.

6. Invoke any analyzers for the stack to perform additional validation of the resource’s input properties.

7. If the resource has no existing state, it is being created. Issue a CreateStep to the step executor and return.

8. Diff the resource in order to determine whether it must be updated, replaced, delete-before-replaced, or has no
changes. Diffing is covered in detail later on, but typically consists of calling the reosource’s provider’s Diff
method with the checked inputs from step 5.

9. If the resource has no changes, issue a SameStep to the step executor and return.

10. If the resource is not being replaced, issue an UpdateStep to the step executor and return.

11. If the resource is being replaced, call the resource’s provider’s Check method again, but with no existing inputs.
This call ensures that the input properties used to create the replacement resource do not reuse generated defaults
from the existing resource.

12. If the replacement resource is being created before the original is deleted (a normal replacement), issue a
CreateStep and a DeleteStep to the step executor and return.

13. At this point, the resource must be deleted before its replacement is created (this is the “delete-before-replace”
case). Calculate the set of dependent resources that must be deleted prior to deleting the resource being replaced.
The details of this calculation are covered in a later section. Once the set of deletions has been calculated, issue
a sequence of DeleteSteps followed by a single CreateStep to the step executor.

Note that all steps that are issued to the step generator are fire-and-forget. Once steps have been issues, the step generator
moves on to process the next RegisterResourceEvent. It is the responsibility of the step executor to communicate
the results of each step back to the resource monitor.

Once the Pulumi program has exited, the step generator determines which existing resources must be deleted by taking
the difference between the set of registered resources and the set of existing resources. These resources are scheduled
for deletion by first sorting the list of resources to delete using the topological order of their reverse-dependency grapth,

2.2. The Step Generator 7

Pulumi

then decomposing the list into a list of lists where each list can be executed in parallel but a previous list must be executed
to completion before advancing to the next list.

In lieu of tracking per-step dependencies and orienting the step executor around these dependencies, this approach
provides a conservative approximation of which deletions can safely occur in parallel. The insight here is that the
resource dependency graph is a partially-ordered set and all partially-ordered sets can be easily decomposed into an-
tichains–subsets of the set that are all not comparable to one another (in this definition, “not comparable” means “do
not depend on one another”).

The algorithm for decomposing a poset into antichains is:

1. While there exist elements in the poset, a. There must exist at least one “maximal” element of the poset. Let
E_max be those elements. b. Remove all elements E_max from the poset. E_max is an antichain. c. Goto 1.

Translated to a resource dependency graph:

1. While the set of condemned resources is not empty: a. Remove all resources with no outgoing edges from the
graph and add them to the current antichain. b. Goto 1.

The resulting list of antichains is a list of list of delete steps that can be safely executed in parallel. Since deletes must
be processed in reverse order (so that resources are not deleted prior to their dependents), the step generator reverses
the list and then issues each sublist to the step executor.

2.2.1 Resource Diffing

Although resource diffing is simple in most cases, there are several possibilities that the step generator must consider
as part of performing a diff. The algorithm for diffing a resource is outlined here.

1. If the resource has been marked for replacement out of band (e.g. by the use of the --target-replace
command-line option of the Pulumi CLI), the resource must be replaced.

2. If the resource’s provider has changed, the resource must be replaced. Default providers are allowed to change
without requiring replacement if and only if the provider’s configuration allows the new default provider to
continue to manage existing resources (this is intended to allow default providers to be upgraded without requiring
that all the resources they manage are replaced).

3. If the engine is configured to use pre-1.0-style diffs, compare the resource’s old and new inputs. If the old and
new inputs differ, the resource must be updated.

4. Otherwise, call the resource’s provider’s Diff method with the resource’s new inputs, old state, and ignore
changes set to determine whether the resource has changed, and if so, if it must be replaced.

Once the diff has been calculated, the step generator applies any replace-on-change options specified by the resource.
These options force a resource to require that it is replaced if any of a particular set of properties has changed.

2.2.2 Dependent Replacements

When a resource must be deleted before it is replaced–whether this is required by the resource’s provider or is forced
using the deleteBeforeReplace resource option–it may be necessary to first delete dependent resources. The step
generator does this by taking the complete set of transitive dependents on the resource under consideration and removing
any resources that would not be replaced by changes to their dependencies. It determines whether or not a resource
must be replaced by substituting unknowns for any input properties that may change due to deletion of the resources
their value depends on and calling the resource’s provider’s Diff method.

This is perhaps clearer when described by example. Consider the following dependency graph:

8 Chapter 2. Resource Registration

Pulumi

In this graph, all of B, C, D, E, and F transitively depend on A. It may be the case, however, that changes to the specific
properties of any of those resources R that would occur if a resource on the path to A were deleted and recreated may
not cause R to be replaced. For example, the edge from B to A may be a simple dependsOn edge such that a change
to B does not actually influence any of B’s input properties. More commonly, the edge from B to A may be due to a
property from A being used as the input to a property of B that does not require B to be replaced upon a change. In
these cases, neither B nor D would need to be deleted before A could be deleted.

2.3 The Step Executor

The step executor is responsible for executing sequences of steps (called “chains”) that perform the resource actions for
a deployment. These chains are issued by the step generator, and most often consist of a single step. While the steps the
make up a chain must be performed serially, chains may be executed in parallel. The step executor uses a (potentially
infinite) pool of workers to execute steps. Once a step completes, the step executor communicates its results to the
resource monitor if necessary. If a step fails, the step executor notes the failure and cancels the deployment. Once
the Pulumi program has exited and the step generator has issued all required deletions, the step executor waits for all
outstanding steps to complete and then returns.

2.4 Example Resource Registration Sequences

2.4.1 Custom Resources

Each of the diagrams below demonstrates a sequence of events that occur when a custom resource is registered. Ex-
amples are given for each possible action: create, update, replace, delete-before-replace, import, and no change.

Create

Update

Replace

Delete-before-replace

2.3. The Step Executor 9

Pulumi

Import

No change

2.4.2 Multi-language Components

The diagram below illustrates the sequence of events that occurs when a multi-language component is registered. The
registration of the component’s children is elided.

10 Chapter 2. Resource Registration

CHAPTER

THREE

DEPLOYMENT SCHEMA

3.1 Pulumi Deployment States

A schema for Pulumi deployment states.

object

One of:

3.1.1 Properties

deployment (required)

The deployment object.

object

version (required)

The deployment version.

integer

3.1.2 Deployment Manifest

Captures meta-information about a deployment, such as versions of binaries, etc.

object

11

Pulumi

Properties

magic (required)

A magic number used to validate the manifest’s integrity.

string

plugins

Information about the plugins used by the deployment.

array

Items: Plugin Info

time (required)

The deployment’s start time.

string

Format: date-time

version (required)

The version of the Pulumi engine that produced the deployment.

string

3.1.3 Plugin Info

Information about a plugin.

object

Properties

name (required)

The plugin’s name.

string

12 Chapter 3. Deployment Schema

Pulumi

path (required)

The path of the plugin’s binary.

string

type (required)

The plugin’s type.

Enum: "analyzer" | "language" | "resource"

version (required)

The plugin’s version.

string

3.1.4 Resource Operation V2

Version 2 of a resource operation state

object

Properties

resource (required)

The state of the affected resource as of the start of this operation.

Resource V3

type (required)

A string representation of the operation.

Enum: "creating" | "updating" | "deleting" | "reading"

3.1. Pulumi Deployment States 13

https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/resources.json#/%24defs/resourceV3

Pulumi

3.1.5 Secrets Provider

Configuration information for a secrets provider.

object

Properties

state

The secrets provider’s state, if any.

type (required)

The secrets provider’s type.

string

3.1.6 Unknown Version

Catchall for unknown deployment versions.

object

Properties

deployment

The deployment object.

object

version

The deployment version.

14 Chapter 3. Deployment Schema

Pulumi

3.1.7 Version 3

The third version of the deployment state.

object

Properties

deployment (required)

The deployment state.

object

Properties

####### manifest (required)

Metadata about the deployment.

Deployment Manifest

####### pending_operations

Any operations that were pending at the time the deployment finished.

array

Items: Resource Operation V2

####### resources

All resources that are part of the stack.

array

Items: Resource V3

####### secrets_providers

Configuration for this stack’s secrets provider.

Secrets Provider

3.1. Pulumi Deployment States 15

https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/resources.json#/%24defs/resourceV3

Pulumi

version (required)

The deployment version. Must be 3.

Constant: 3

3.2 Pulumi Property Value

A schema for Pulumi Property values.

One of:

3.2.1 Archive property values

object

One of:

Properties

4dabf18193072939515e22adb298388d (required)

Archive signature

Constant: "0def7320c3a5731c473e5ecbe6d01bc7"

hash

The SHA256 hash of the archive’s contents.

string

3.2.2 Array property values

array

Items: Pulumi Property Value

16 Chapter 3. Deployment Schema

Pulumi

3.2.3 Asset property values

object

One of:

Properties

4dabf18193072939515e22adb298388d (required)

Asset signature

Constant: "c44067f5952c0a294b673a41bacd8c17"

hash

The SHA256 hash of the asset’s contents.

string

3.2.4 Decrypted Secret

object

Properties

plaintext (required)

The decrypted, JSON-serialized property value

string

3.2.5 Encrypted Secret

object

3.2. Pulumi Property Value 17

Pulumi

Properties

ciphertext (required)

The encrypted, JSON-serialized property value

string

3.2.6 Hash-only Archive

3.2.7 Hash-only Asset

3.2.8 Literal Archive

Properties

assets (required)

The literal contents of the archive.

object

Additional properties: https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/
property-values.json#/oneOf/5/oneOf/1/properties/assets/additionalProperties

3.2.9 Literal Asset

Properties

text (required)

The literal contents of the asset.

string

18 Chapter 3. Deployment Schema

Pulumi

3.2.10 Local File Archive

Properties

path (required)

The path to a local file that contains the archive’s contents.

string

3.2.11 Local File Asset

Properties

path (required)

The path to a local file that contains the asset’s contents.

string

3.2.12 Object property values

object

Additional properties: Pulumi Property Value

3.2.13 Primitive property values

null | boolean | number | string

3.2.14 Pulumi Property Value

A schema for Pulumi Property values.

One of:

3.2.15 Resource reference property values

object

3.2. Pulumi Property Value 19

Pulumi

Properties

4dabf18193072939515e22adb298388d (required)

Resource reference signature

Constant: "5cf8f73096256a8f31e491e813e4eb8e"

id

The ID of the referenced resource.

string

packageVersion

The package version of the referenced resource.

string

urn (required)

The URN of the referenced resource.

string

3.2.16 Secret Property Values

object

One of:

Properties

4dabf18193072939515e22adb298388d (required)

Secret signature

Constant: "1b47061264138c4ac30d75fd1eb44270"

20 Chapter 3. Deployment Schema

Pulumi

3.2.17 URI File Archive

Properties

uri (required)

The URI of a file that contains the archive’s contents.

string

Format: uri

3.2.18 URI File Asset

Properties

uri (required)

The URI of a file that contains the asset’s contents.

string

Format: uri

3.2.19 Unknown property values

Constant: "04da6b54-80e4-46f7-96ec-b56ff0331ba9"

3.2.20 https://github.com/pulumi/pulumi/blob/master/sdk/go/common/
apitype/property-values.json#/oneOf/5/oneOf/1/properties/assets/
additionalProperties

One of:

3.3 Pulumi Resource State

Schemas for Pulumi resource states.

One of:

3.3. Pulumi Resource State 21

Pulumi

3.3.1 Resource V3

Version 3 of a Pulumi resource state.

object

Properties

additionalSecretOutputs

A list of outputs that were explicitly marked as secret when the resource was created.

array

Items: string

aliases

A list of previous URNs that this resource may have had in previous deployments

array

Items: Unique Resource Name (URN)

custom

True when the resource is managed by a plugin.

boolean

customTimeouts

A configuration block that can be used to control timeouts of CRUD operations

object

delete

True when the resource should be deleted during the next update.

boolean

22 Chapter 3. Deployment Schema

Pulumi

dependencies

The dependency edges to other resources that this depends on.

array

Items: Unique Resource Name (URN)

external

True when the lifecycle of this resource is not managed by Pulumi.

boolean

id

The provider-assigned resource ID, if any, for custom resources.

string

importID

The import input used for imported resources.

string

initErrors

The set of errors encountered in the process of initializing resource (i.e. during create or update).

array

Items: string

inputs

The input properties supplied to the provider.

object

Additional properties: Pulumi Property Value

3.3. Pulumi Resource State 23

https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/property-values.json

Pulumi

outputs

The output properties returned by the provider after provisioning.

object

Additional properties: Pulumi Property Value

parent

An optional parent URN if this resource is a child of it.

Unique Resource Name (URN)

pendingReplacement

Tracks delete-before-replace resources that have been deleted but not yet recreated.

boolean

propertyDependencies

A map from each input property name to the set of resources that property depends on.

object

Additional properties: https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/
resources.json#/$defs/resourceV3/properties/propertyDependencies/additionalProperties

protect

True when this resource is “protected” and may not be deleted.

boolean

provider

A reference to the provider that is associated with this resource.

string

24 Chapter 3. Deployment Schema

https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/property-values.json

Pulumi

type

The resource’s full type token.

string

urn (required)

The resource’s unique name.

Unique Resource Name (URN)

3.3.2 Unique Resource Name (URN)

The unique name for a resource in a Pulumi stack.

string

3.3.3 https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/
resources.json#/$defs/resourceV3/properties/propertyDependencies/
additionalProperties

array

Items: Unique Resource Name (URN)

3.3. Pulumi Resource State 25

Pulumi

26 Chapter 3. Deployment Schema

CHAPTER

FOUR

PULUMI TYPE SYSTEM

In its role as a broker of information between various actors–e.g. language SDKs, resource providers, multi-language
components, and statefiles–and in its role as a programming model, it is important that Pulumi deals in values with
well-defined semantics. The Pulumi type system specifies these semantics. It is the responsibility of each language
SDK and interchange format to ensure that these semantics are faithfully implemented, ideally in as idiomatic a fashion
as possible.

Note that this document describes the abstract type system rather than describing its implementations. As long as
implementations faithfully implement the semantics described by this document, they may choose to provide simpler
APIs/shorthands/etc. for the various types and combinators. For example, the SDK for a language that natively supports
operations on Output<T> values may not expose Output<T> types and combinators to the user at all.

4.1 Primitive Types

The core primitives of the Pulumi type system form a superset of the JSON type system, and supports the following
types:

• Null, which represents the lack of a value

• Bool, which represents a boolean value

• Number, which represents an IEEE-754 double-precision number

• String, which represents a sequence of UTF-8 encoded unicode code points

• Asset, which represents a blob

• Archive, which represents a map from strings to Assets or Archives

• ResourceReference, which represents a reference to a resource

• Tuple<T0, T1, ... TN>, which represents a tuple of heterogenously-typed values. Note that this type mainly
exists for the purpose of writing the signature for all.

• Array<T>, which represents a numbered sequence of values of a particular type

• Map<T>, which represents an unordered mapping from strings to values of a particular type

• Union<T0, T1 ... TN>, which represents a value of one of a fixed set of types

• Enum<T, V0 ... VN>, which represents one of a fixed set of values of a particular type

27

Pulumi

4.1.1 Assets and Archives

An Asset or Archive may contain either literal data or a reference to a local file located via its path or a local or
remote file located via its URL.

In the case of Assets, the literal data is a textual string, and the referenced file is an opaque blob.

In the case of Archives, the literal data is a map from strings to Assets or Archives, and the referenced file is a TAR
archive, gzipped TAR archive, or ZIP archive.

Each Asset or Archive also carries the SHA-256 hash of its contents. This hash can be used to uniquely identify the
asset (e.g. for locally caching Asset or Archive contents).

4.1.2 Resource References

A ResourceReference represents a reference to a resource. Although all that is necessary to uniquely identify a
resource within the context of a stack is its URN, a ResourceReference also carries the resource’s ID (if it is not a
component) and the version of the provider that manages the resource. If the contents of the referenced resource must
be inspected, the reference must be resolved by invoking the getResource function of the engine’s builtin provider.
Note that this is only possible if there is a connection to the engine’s resource monitor, e.g. within the scope of a call
to Construct. This implies that resource references may not be resolved within calls to other provider methods.
Therefore, configuration values, custom resources and provider functions should not rely on the ability to resolve
resource references, and should instead treat resource references as either their ID (if present) or URN. If the ID is
present and empty, it should be treated as an Unknown.

4.2 Object Types

Object types are defined as mapping from property names to property types. Duplicate property names are not allowed,
and each property name maps to a single type.

4.3 Promise<T>

A value of type Promise<T> represents the result of an asynchronous computation. Note that although computations
may fail, failures cannot be handled at runtime, and cause a hard stop when attempting to access a Promise<T>’s
concrete value.

4.4 Output<T>

Perhaps the most important type in the Pulumi type system is Output<T>. A value of type Output<T> represents a
node in a Pulumi program graph, and behaves like a Promise<T> that carries additional metadata that describes the
resources on which the value depends, whether the value is known or unknown, and whether or not the value is secret.

28 Chapter 4. Pulumi Type System

Pulumi

4.4.1 Dependencies

If an Output<T> value is the result of a resource operation–e.g. if it is an output property of some resource–it is said
to depend on that resource.

If a value of type Output<T> depends on a resource R, the result of any computation that depends on its concrete value
also depends on R.

4.4.2 Unknowns

An Output<T> may be unknown if it depends on the result of a resource operation that will not be run because it is
part of a pulumi preview. Previews typically produce unknowns for properties with values that cannot be determined
until the resource is actually created or updated.

If a value of type Output<T> is unknown, any computation that depends on its concrete value must not run, and must
instead produce an unknown Output<T>.

4.4.3 Secrets

An Output<T> may be marked as secret if its concrete value contains sensitive information.

If a value of type Output<T> is secret, the result of any computation that depends on its concrete value must also be
secret.

4.5 Input<T>

The partner of Output<T> is Input<T>, which is defined as Union<T, Output<T>>. In simpler terms, a location of
type Input<T> may accept either a plain old T value or an Output<T> value.

4.6 inputShape(T)

Although Input<T> gives us the ability to deal in both T and Output<T> values, it is often the case that we
want to construct composite values out of multiple Input<T>s. For example, consider Input<Array<string>>:
a value of this type accepts either a Array<string> or an Output<Array<string>>, but does not accept
a value of type Array<Output<string>>. In order to accept all three of these types, we need the type
Input<Array<Input<string>>>>. The inputShape type function defines an algorithm for producing these sorts
of types.

fn inputShape(T) {
match T {

_ => Input<T>,
Tuple<...U> => Input<Tuple<map(...U, u => inputShape(u))>>,
Array<U> => Input<Array<inputShape(U)>>,
Map<U> => Input<Map<inputShape(U)>>,
Union<...U> => Union<map(...U, u => inputShape(u))>,
Promise<U> => Input<U>,
Output<U> => Input<U>,
Object<...P> => Input<Object<map(...P, (name, u) => (name,␣

→˓inputShape(u)))>>
(continues on next page)

4.5. Input<T> 29

Pulumi

(continued from previous page)

}
}

If we expand Input<T> into its underlying type, Union<T, Output<T>>, the types may be clearer:

fn inputShape(T) {
match T {

_ => Union<T, Output<T>>,
Tuple<...U> => Union<Tuple<map(...U, u => inputShape(u))>, Output<Tuple

→˓<map(...U, u => inputShape(u))>>>,
Array<U> => Union<Array<inputShape(U)>, Output<Array<inputShape(U)>>>,
Map<U> => Union<Map<inputShape(U)>, Output<Map<inputShape(U)>>>,
Union<...U> => Union<map(...U, u => inputShape(u))>,
Promise<U> => Union<U, Output<U>>,
Output<U> => Union<U, Output<U>>,
Object<...P> => Union<Object<map(...P, (name, u) => (name,␣

→˓inputShape(u)))>, Output<Object<map(...P, (name, u) => (name, inputShape(u)))>>>
}

}

Resource input properties often use input-shaped types.

4.7 outputShape(T)

Because the Output<T> metadata (dependencies, unknowns, and secrets) only applies to a single value, it is necessary
to represent composite metadata using nested Output<T> types. Consider a variant of the Array<string> example
from inputShape(T): in order to produce an array where each element may be an output, we need to use the type
Output<Array<Output<string>>>.

The outputShape type function defines an algorithm for producing these sorts of values.

fn outputShape(T) {
match T {

_ => Output<T>,
Tuple<...U> => Output<Tuple<map(...U, u => outputShape(u))>>,
Array<U> => Output<Array<outputShape(U)>>,
Map<U> => Output<Map<outputShape(U)>>,
Union<...U> => Union<map(...U, u => outputShape(u))>,
Promise<U> => Output<U>,
Output<U> => Output<U>,
Object<...P> => Output<Object<map(...P, (name, u) => (name,␣

→˓outputShape(u)))>>
}

}

Resource output properties often use output-shaped types.

Projecting output-shaped is a bit unwieldy, as values of these types often require a great deal of unwrapping as nesting
depth increases.

Instead of projecting these types in their fully-elaborated form, the various language SDKs tend to opt to project them as
a simple Output<T> while using an internal representation for the concrete value that includes distinguished unknown
values. This approach lets the SDKs to allow e.g. lifted property and element access into partially-known composite

30 Chapter 4. Pulumi Type System

Pulumi

values. For example, the Node SDK will allow the user to access an element of an Output<[]string> via a proxied
index operator even if some elements of the array are unknown, though it will not allow the user to access the entire
value via apply.

4.8 plainShape(T)

The final type function, plainShape(T), replaces Output<T> types with their type argument:

fn plainShape(T) {
match T {

_ => T,
Tuple<...U> => Tuple<map(...U, u => plainShape(u))>,
Array<U> => Array<plainShape(U)>,
Map<U> => Map<plainShape(U)>,
Union<...U> => Union<map(...U, u => plainShape(u)),
Promise<U> => U,
Output<U> => U,
Object<...P> => Object<map(...P, (name, u) => (name, plainShape(u))>,

}
}

This function is primarily useful for describing the signature of the all combinator.

4.9 Output<T> Combinators

The rules described for working with Output<T>metadata–dependencies, unknowns, and secrets–require special book-
keeping on the part of the consumer. There are three primitive combinators that aid in this bookkeeping: apply, all,
and unwrap.

4.9.1 apply<T, U>(v: Output<T>, f: (T) => U): Output<U>

The apply API allows its caller to access the concrete value of an Output<T> within the context of a caller-supplied
callback.

apply trivially obeys the Output<T> rules for dependencies, unknowns, and secrets:

• the dependencies of the Output<T> argument are propagated to the result

• if the Output<T> argument is unknown, the callback is not run and the result is unknown

• if the Output<T> argument is secret, the result is secret

Note that the argument for U may itself be an Output<V>, in which case the return type of apply will be
Output<Output<V>>. The result can be unwrapped using the unwrap combinator. A language SDK may opt to
automatically unwrap such values if its type system is flexible enough to express the unwrapping.

This API is morally equivalent to Javascript’s Promise.then API, but with Output<>s in the place of Promise<>s:

class Output<T> {
public apply<U>(func: (t: T) => U): Output<U> {

...
}

}

4.8. plainShape(T) 31

Pulumi

4.9.2 unwrap<T>(v: Output<Output<T>>): Output<T>

The unwrap API transforms an Output<Output<T>> into an Output<T> according to the Output<T> rules for de-
pendencies, unknowns, and secrets:

• the result’s dependencies are the union of the outer and inner Output<>s’ dependencies

• if either the outer or inner Output<> is unknown, the result is unknowns

• if either the outer or inner Output<> is secret, the result is secret

If its type system is flexible enough, a language SDK may choose to omit a public-facing unwrap API in favor of
automatically unwrapping nested Output<>s.

4.9.3 all<T0 ... TN>(t0: Output<T0>, ... tn: Output<TN>):
Output<plainShape(Tuple<T0 ... TN>)>

The all API combines multiple heterogenous outputs into a single unwrapped tuple output. The metadata from the
arguments is combined as per the Output<T> rules for dependencies, unknowns, and secrets:

• the result of all depends on the union of the dependencies of its Output<> arguments

• if any of the Output<> arguments is unknown, the result is unknown

• if any of the Output<> arguments is secret, the result is secret

For example, here is a simplified version of the signature for the Typescript implementation of all:

export function all<T1, T2>(values: [Output<T1>, Output<T2>]): Output<[Unwrap<T1>, Unwrap
→˓<T2>]>;

As in apply, nested outputs must be unwrapped prior to use, though SDKs may choose to automatically unwrap if
their type system can accommodate the typing.

A variant of all for Objects is also possible:

all<Object<...P>>(v: Object<...P>): Output<plainShape(Object<...P>)>

This variant treats the object as a tuple of key/value pairs.

32 Chapter 4. Pulumi Type System

CHAPTER

FIVE

IMPORTING RESOURCES

There are a variety of scenarios that require the ability for users to import existing resources for management by Pulumi.
For example:

• Migrating from manually-managed resources to IaC

• Migrating from other IaC platforms to Pulumi

• Migrating resources between Pulumi stacks

At a minimum, importing a resource involves adding the resource’s state to the destination stack’s statefile. Once the
resource has been added to the stack, the Pulumi CLI is able to manage the resource like any other. In order to do
anything besides delete the resource, however, the user must also add a definition for the resource to their Pulumi
program.

Both of the import approaches used by Pulumi aim to prevent the accidental modification or deletion of a resource
being imported. Though the user experiences of these approaches are quite different, they share a common principle:
at the point at which a resource is successfully imported, the stack’s Pulumi program must contain a definition for
the resource that accurately describes its current state (i.e. there are no differences between the state described in the
program and the actual state of the imported resource).

5.1 import resource option

The oldest method supported of importing resources into a stack is the import resource option. When set, this option
specifies the ID of an existing resource to import into the stack. The exact behavior of this option depends on the current
state of the resource within the destination stack:

1. If the resource does not exist, it is imported

2. If the resource exists and has the same ID or ImportID, the resource is treated like any other resource

3. Otherwise, the current resource is deleted and replaced by importing the resource with the specified ID

The trickiest of these three situations is (2). This state transition is intended to allow users to import a resource and
then continue to make changes to their program without requiring that they remove the resource option. For example,
this allows a user to import a resource in one pulumi up, then successfully run another pulumi up without removing
the import option from their program and without attempting to import the resource a second time.

As mentioned in the introduction, the import resource option requires that the desired state described by Pulumi
program for a resource being imported matches the actual state of the resource as returned by the provider. More
precisely, given a resource R of type T with import ID X and the resource inputs present in the Pulumi program I, the
engine performs the following sequence of operations:

1. Fetch the current inputs I and state S for the resource of type Twith ID X from its provider by calling the provider’s
Read method. If the provider does not return a value for I, the provider does not support importing resources
and the import fails.

33

https://www.pulumi.com/docs/intro/concepts/resources/#import
https://www.pulumi.com/docs/intro/concepts/resources/#options

Pulumi

2. Process the ignoreChanges resource option by copying the value for any ignored input property from I to I.

3. Validate the resource’s inputs and apply any programmatic defaults by passing I and I to the provider’s Check
method. Let I be the checked inputs; these inputs form the resource’s desired state.

4. Check for differences between I and S by calling the provider’s Diff method. If the provider reports any differ-
ences, the import either succeeds with a warning (in the case of a preview) or fails with an error (in the case of
an update).

If all of these steps succeed, the user is left with a definition for R in their Pulumi program and the statefile of the
updated stack that do not differ.

5.1.1 Technical Note

Although the “no diffs” requirement is intended to prevent surprise, it also accommodates a technical limitation of the
Pulumi engine. In order to actually perform the diff–an operation that is required whether or not the user is permitted to
describe a desired state for the imported resource that differs from its actual state–the engine must fetch the resource’s
current imports and state from its provider. In order for this state to affect the steps the engine issues for the resources, the
state would need to be fetched during or prior to the point at which the resource’s registration reaches the step generator.
In the former case, this would cause the engine to spend an unacceptable amount of time in the step generator, as it
processes resource registrations serially. In the latter case, the user experience would likely be negatively affected by
a lack of output from the Pulumi CLI, which only displays the status of steps. In order to address these issues, the
operations described above happen in a dedicated ImportStep that is run by the step executor.

5.2 pulumi import

The second, newer method of importing resources into a stack is the pulumi import command. This command
accepts a list of import specs to import, imports the resources into the destination stack, and generates definitions for
the resources in the language used by the stack’s Pulumi program. Each import spec is at least a type token, name, and
ID, but may also specify a parent URN, provider reference, and package version.

During a pulumi import, given a resource R of type T with import ID X and an empty set of input properties I, the
engine performs the following sequence of operations:

1. Fetch the current inputs I and state S for the resource of type Twith ID X from its provider by calling the provider’s
Read method. If the provider does not return a value for I, the provider does not support importing resources
and the import fails.

2. Fetch the schema for resources of type T from the provider. If the provider is not schematized or if T has no
schema, the import fails.

3. Copy the value of each required input property defined in the schema for T from I to I.

4. Validate the resource’s inputs and apply any programmatic defaults by passing I and I to the provider’s Check
method. Let I be the checked inputs; these inputs form the resource’s desired state.

5. Check for differences between I and S by calling the provider’s Diff method. If the provider reports any differ-
ences, the values of the differing properties are copied from S to I. This is intended to produce the smallest valid
set of inputs necessary to avoid diffs. This does not use a fixed-point algorithm because there is no guarantee that
the values copied from S are in fact valid (state and inputs with the same property paths may have different types
and validation rules) and there is no guarantee that such an algorithm would terminate (TF bridge providers have
had bugs that cause persistent diffs, which can only be worked around with ignoreChanges).

If all of these steps succeed, the user is left with a definition for R in the statefile of the updated stack that do not differ.
The Pulumi CLI then passes the inputs I stored in the statefile to the import code generator. The import code generator

34 Chapter 5. Importing Resources

https://www.pulumi.com/docs/intro/concepts/resources/#import
https://www.pulumi.com/docs/cli/commands/pulumi_import/

Pulumi

converts the values present in I into an equivalent PCL representation of R’s desired state, then passes the PCL to a
language-specific code generator to emit a representation of R’s desired state in the language used by the destination
stack’s Pulumi program. The user can then copy the generated definition into their Pulumi program.

Graphically, the import process looks something like this:

5.2.1 Challenges

The primary challenge in generating appropriate code for pulumi import lies in determining exactly what the input
values for a particular resource should be. In many providers, it is not necessarily possible to accurately recover a
resource’s inputs from its state. This observation led to the diff-oriented approach described above, where the importer
begins with an extremely minimal set of inputs and attempts to derive the actual inputs from the results of a call to the
provider’s Diff method. Unfortunately, the results are not always satisfactory, and the relatively small set of inputs
present in the generated code can make it difficult for users to determine what inputs they actually need to pass to the
resource to describe its current state.

A few other approaches might be:

• Emit no properties at all; just appropriate constructor calls. This will almost always emit code that does not
compile or run, as nearly every resource has at least one required property.

• Copy the value for every input property present in a resource’s schema from its state. This risks emitting code
that does not compile due to differences in types between inputs and outputs, and also risks emitting code that
does not work at runtime due to conflicts between mutually-exclusive properties (these are common for TF-based
resources, for example).

It is likely that some mix of approaches is necessary in order to arrive at a satisfactory solution, as none of the above
solutions seems universally “correct”.

5.2. pulumi import 35

Pulumi

36 Chapter 5. Importing Resources

CHAPTER

SIX

RESOURCE PROVIDER IMPLEMENTER’S GUIDE

6.1 Provider Programming Model

6.1.1 Resources

The core functionality of a resource provider is the management of custom resources and construction of component
resources within the scope of a Pulumi stack. Custom resources have a well-defined lifecycle built around the differences
between their acutal state and the desired state described by their inputs and implemented using create, read, update,
and delete (CRUD) operations defined by the provider. Component resources have no associated lifecycle, and are
constructed by registering child custom or component resources with the Pulumi engine.

URNs

Each resource registered with the Pulumi engine is logically identified by its uniform resource name (URN). A re-
source’s URN is derived from the its type, parent type, and user-supplied name. Within the scope of a resource-related
provider method (Check , Diff , Create, Read , Update, Delete, and Construct), the type of the resource can be
extracted from the provided URN. The structure of a URN is defined by the grammar below.

urn = "urn:pulumi:" stack "::" project "::" qualified type name "::" name ;

stack = string ;
project = string ;
name = string ;
string = (* any sequence of unicode code points that does not contain "::" *) ;

qualified type name = [parent type "$"] type ;
parent type = type ;

type = package ":" [module ":"] type name ;
package = identifier ;
module = identifier ;
type name = identifier ;
identifier = unicode letter { unicode letter | unicode digit | "_" } ;

37

Pulumi

Custom Resources

In addition to its URN, each custom resource has an associated ID. This ID is opaque to the Pulumi engine, and is only
meaningful to the provider as a means to identify a physical resource. The ID must be a string. The empty ID indicates
that a resource’s ID is not known because it has not yet been created. Critically, a custom resource has a well-defined
lifecycle within the scope of a Pulumi stack.

Component Resources

A component resource is a logical conatiner for other resources. Besides its URN, a component resource has a set
of inputs, a set of outputs, and a tree of children. Its only lifecycle semantics are those of its children; its inputs and
outputs are not related in the same way a custom resource’s inputs and state are related. The engine can call a resource
provider’s Construct method to request that the provider create a component resource of a particular type.

6.1.2 Functions

A provider function is a function implemented by a provider, and has access to any of the provider’s state. Each function
has a unique token, optionally accepts an input object, and optionally produces an output object. The data passed to
and returned from a function must not be unknown or secret, and must not refer to resources. Note that an exception
to these rules is made for component resource methods, which may accept values of any type, and are provided with a
connection to the Pulumi engine.

6.1.3 Data Exchange Types

The values exchanged between Pulumi resource providers and the Pulumi engine are a superset of the values expressible
in JSON.

Pulumi supports the following data types:

• Null, which represents the lack of a value

• Bool, which represents a boolean value

• Number, which represents an IEEE-754 double-precision number

• String, which represents a sequence of UTF-8 encoded unicode code points

• Array, which represents a numbered sequence of values

• Object, which represents an unordered map from strings to values

• Asset, which represents a blob

• Archive, which represents a map from strings to Assets or Archives

• ResourceReference, which represents a reference to a Pulumi resource

• Unknown, which represents a value whose type and concrete value are not known

• Secret, which demarcates a value whose contents are sensitive

38 Chapter 6. Resource Provider Implementer’s Guide

Pulumi

Assets and Archives

An Asset or Archive may contain either literal data or a reference to a file or URL. In the former case, the literal data
is a textual string or a map from strings to Assets or Archives, respectively. In the latter case, the referenced file or
URL is an opaque blob or a TAR, gzipped TAR, or ZIP archive, respectively.

Each Asset or Archive also carries the SHA-256 hash of its contents. This hash can be used to uniquely identify the
asset (e.g. for locally caching Asset or Archive contents).

Resource References

A ResourceReference represents a reference to a Pulumi resource. Although all that is necessary to uniquely identify
a resource is its URN, a ResourceReference also carries the resource’s ID (if it is a custom resource) and the version
of the provider that manages the resource. If the contents of the referenced resource must be inspected, the reference
must be resolved by invoking the getResource function of the engine’s builtin provider. Note that this is only possible
if there is a connection to the engine’s resource monitor, e.g. within the scope of a call to Construct. This implies
that resource references may not be resolved within calls to other provider methods. Therefore, configuration values,
custom resources and provider functions should not rely on the ability to resolve resource references, and should instead
treat resource references as either their ID (if present) or URN. If the ID is present and empty, it should be treated as
an Unknown.

Unknowns

An Unknown represents a value whose type and concrete value are not known. Resources typically produce these values
during previews for properties with values that cannot be determined until the resource is actually created or updated.
Functions must not accept or return unknown values.

Secrets

A Secret represents a value whose contents are sensitive. Values of this type are merely wrappers around the sensitive
value. A provider should take care not to leak a secret value, and should wrap any resource output values that are always
sensitive in a Secret. Functions must not accept or return secret values.

Property Paths

TODO: write this up

6.2 Schema

Each provider constitutes the implementation of a single Pulumi package. Each Pulumi package has an associated
schema that describes the package’s configuration, resources, functions, and data types. The schema is primarily used
to facilitate programmatic generation of per-language SDKs for the Pulumi package, but is also used for importing
resources, program code generation, and more. Schemas may be expressed using JSON or YAML, and must validate
against the metaschema.

6.2. Schema 39

Pulumi

6.3 Provider Lifecycle

Clients of a provider (e.g. the Pulumi CLI) must obey the provider lifecycle. This lifecycle guarantees that a provider is
configured before any resource operations are performed or provider functions are invoked. The lifecycle of a provider
instance is described in brief below.

1. The user looks up the factory for a particular (package, semver) tuple and uses the factory to create a provider
instance.

2. The user configures the provider instance with a particular configuration object.

3. The user performs resource operations and/or calls provider functions with the provider instance.

4. The user shuts down the provider instance.

Within the scope of a Pulumi stack, each provider instance has a corresponding provider resource. Provider resources
are custom resources that are managed by the Pulumi engine, and obey the usual custom resource lifecycle. The Check
and Diff methods for a provider resource are implemented using the CheckConfig and DiffConfig methods of
the resource’s provider instance. The latter is criticially important to the user experience: if DiffConfig indicates
that the provider resource must be replaced, all of the custom resources managed by the provider resource will also
be replaced. Thus, DiffConfig should only indicate that replacement is required if the provider’s new configuration
prevents it from managing resources associated with its old configuration.

6.3.1 Lookup

Before a provider can be used, it must be instantiated. Instatiating a provider requires a (package, semver) tuple,
which is used to find an appropriate provider factory. The lookup process proceeds as follows:

• Let the best available factory B be empty

• For each available provider factory F with package name package:

– If the F’s version is compatible with semver:

∗ If B is empty or if F’s version is newer than B’s version, set B to F

• If B is empty, no compatible factory is available, and lookup fails

Within the context of the Pulumi CLI, the list of available factories is the list of installed resource plugins plus the
builtin pulumi provider. The list of installed resource plugins can be viewed by running pulumi plugin ls.

Once an appropriate factory has been found, it is used to construct a provider instance.

6.3.2 Configuration

A provider may accept a set of configuration variables. After a provider is instantiated, the instance must be configured
before it may be used, even if its set of configuration variables is empty. Configuration variables may be of any type.
Because it has no connection to the Pulumi engine during configuration, a provider’s configuration variables should
not rely on the ability to resolve resource references.

In general, a provider’s configuration variables define the set of resources it is able to manage: for example, the aws
provider accepts the AWS region to use as a configuration variable, which prevents a particular instance of the provider
from managing AWS resources in other regions. As noted in the overview, changes to a provider’s configuration that
prevent the provider from managing resources that were created with its old configuration should require that those
resources are destroyed and recreated.

Provider configuration is performed in at most three steps:

40 Chapter 6. Resource Provider Implementer’s Guide

Pulumi

1. CheckConfig, which validates configuration values and applies defaults computed by the provider. This step
is only required when configuring a provider using user-supplied values, and can be skipped when using values
that were previously processed by CheckConfig.

2. DiffConfig, which indicates whether or not the new configuration can be used to manage resources created with
the old configuration. Note that this step is only applicable within contexts where new and old configuration exist
(e.g. during a preview or update of a Pulumi stack).

3. Configure, which applies the inputs validated by CheckConfig.

CheckConfig

CheckConfig implements the semantics of a custom resource’s Check method, with provider configuration in the
place of resource inputs. Each call to CheckConfig is provided with the provider’s prior checked configuration (if
any) and the configuration supplied by the user. The provider may reject configuration values that do not conform to
the provider’s schema, and may apply default values that are not statically computable. The type of a computed default
value for a property should agree with the property’s schema.

DiffConfig

DiffConfig implements the semantics of a custom resource’s Diff method, with provider configuration in the place
of resource inputs and state. Each call to DiffConfig is provided with the provider’s prior and current configuration.
If there are any changes to the provider’s configuration, those changes should be reflected in the result of DiffConfig.
If there are changes to the configuration that make the provider unable to manage resources created using the prior
configuration (e.g. changing an AWS provider instance’s region), DiffConfig should indicate that the provider must
be replaced. Because replacing a provider will require that all of the resources with which it is associated are also
replaced, replacement semantics should be reserved for changes to configuration properties that are guaranteed to
make old resources unmanagable (e.g. a change to an AWS access key should not require replacement, as the set of
resources accesible via an access key is easily knowable).

Configure

Configure applies a set of checked configuration values to a provider instance. Within a call to Configure, a provider
instance should use its configuration values to create appropriate SDK instances, check connectivity, etc. If configura-
tion fails, the provider should return an error.

Parameters

• inputs: the configuration Object for the provider. This value may contain Unknown values if the provider is
being configured during a preview. In this case, the provider should provide as much functionality as possible.

Results

None.

6.3. Provider Lifecycle 41

Pulumi

6.3.3 Shutdown

Once a client has finished using a resource provider, it must shut the provider down. A client requests that a provider shut
down gracefully by calling its SignalCancellation method. In response to this method, a provider should cancel
all outstanding resource operations and funtion calls. After calling SignalCancellation, the client calls Close to
inform the provider that it should release any resources it holds.

SignalCancellation is advisory and non-blocking; it is up to the client to decide how long to wait after calling
SignalCancellation to call Close. Typically, a provider should check for the cancellation signal while polling for
completion of an operation. If cancelling while waiting for a create operation to be completed, then a “partial state”
should be returned in the error to include the provider-created id.

6.4 Custom Resource Lifecycle

A custom resource has a well-defined lifecycle within the scope of a Pulumi stack. When a custom resource is registered
by a Pulumi program, the Pulumi engine first determines whether the resource is being read, imported, or managed.
Each of these operations involves a different interaction with the resource’s provider.

If the resource is being read, the engine calls the resource’s provider’s Read method to fetch the resource’s current
state. This call to Read includes the resource’s ID and any state provided by the user that may be necessary to read the
resource.

If the resource is being imported, the engine first calls the provider’s Read method to fetch the resource’s current state
and inputs. This call to Read only inclues the ID of the resource to import; that is, any importable resource must be
identifiable using its ID alone. If the Read succeeds, the engine calls the provider’s Check method with the inputs
returned by Read and the inputs supplied by the user. If any of the inputs are invalid, the import fails. Finally, the
engine calls the provider’s Diff method with the inputs returned by Check and the state returned by Read . If the call
to Diff indicates that there is no difference between the desired state described by the inputs and the actual state, the
import succeeds. Otherwise, the import fails.

If the resource is being managed, the engine first looks up the last registered inputs and last refreshed state for the
resource’s URN. The engine then calls the resource’s provider’s Check method with the last registered inputs (if any)
and the inputs supplied by the user. If any of the inputs are invalid, the registration fails. Otherwise, the engine decides
which operations to perform on the resource based on the difference between the desired state described by its inputs
and its actual state. If the resource does not exist (i.e. there is no last refereshed state for its URN), the engine calls the
provider’s Create method, which returns the ID and state of the created resource. If the resource does exist, the action
taken depends on the differences (if any) between the desired and actual state of the resource.

If the resource does exist, the engine calls the provider’s Diff method with the inputs returned from Check , the
resource’s ID, and the resource’s last refreshed state. If the result of the call indicates that there is no difference
between the desired and actual state, no operation is necessary. Otherwise, the resource is either updated (if Diff does
not indicate that the resource must be replaced) or replaced (if Diff does indicate that the resource must be replaced).

To update a resource, the engine calls the provider’s Updatemethod with the inputs returned from Check , the resource’s
ID, and its last refreshed state. Update returns the new state of the resource. The resource’s ID may not be changed by
a call to Update.

To replace a resource, the engine first calls Check with an empty set of prior inputs and the inputs supplied with the
resource’s registration. If Check fails, the resource is not replaced. Otherwise, the inputs returned by this call to
Check will be used to create the replacement resource. Next, the engine inspects the resource options supplied with
the resource’s registration and result of the call to Diff to determine whether the replacement can be created before
the original resource is deleted. This order of operations is preferred when possible to avoid downtime due to the
lag between the deletion of the current resource and creation of its replacement. If the replacement may be created
before the original is deleted, the engine calls the provider’s Create method with the re-checked inputs, then later
calls Delete with the resource’s ID and original state. If the resource must be deleted before its replacement can be
created, the engine first deletes the transitive closure of resource that depend on the resource being replaced. Once

42 Chapter 6. Resource Provider Implementer’s Guide

Pulumi

these deletes have completed, the engine deletes the original resource by calling the provider’s Delete method with
the resource’s ID and original state. Finally, the engine creates the replacement resource by calling Create with the
re-checked inputs.

If a managed resource registered by a Pulumi program is not re-registered by the next successful execution of a Pulumi
progam in the resource’s stack, the engine deletes the resource by calling the resource’s provider’s Deletemethod with
the resource’s ID and last refereshed state.

The diagram below summarizes the custom resource lifecycle. Detailed descriptions of each resource operation follow.

6.4.1 Lifecycle Methods

Check

The Check method is responsible for validating the inputs to a resource. It may optionally apply default values for
unspecified input properties that cannot reasonably be computed outside the provider (e.g. because they require access
to the provider’s internal data structures).

Parameters

• urn: the URN of the resource.

• olds: the last recorded input Object for the resource, if any. If present, these inputs must have been generated
by a prior call to Check or Read . These inputs will never contain Unknowns.

• news: the new input Object for the resource. These inputs may have been provided by the user or generated by
a call to Read , and may contain Unknowns.

Results

• inputs: the checked input Object for the resource with default values applied. The types of the properties in
inputs should agree with the types of the resource’s input properties as described in its (schema)[#schema]. If
news contains Unknowns, inputs may contain Unknowns.

• failures: any validation failures present in the inputs. These failures should be constrained to type and range
mismatches. A failure is a tuple of a property path and a failure reason.

Diff

The Diff method is responsible for calculating the differences between the actual and desired state of a resource as
represented by its last recorded state and new input Object as returned from Check or Read and the logical operation
necessary to reconcile the two (i.e. no operation, an Update, or a Replace`).

6.4. Custom Resource Lifecycle 43

Pulumi

Parameters

• urn: the URN of the resource.

• id: the ID of the resource.

• olds: the last recorded state Object for the resource. This Object must have been generated by a call to
Create, Read, or Update, and will never contain Unknowns.

• news: the current input Object for the resource as returned by Check or Read . This value may contain
Unknowns.

• ignoreChanges: the set of property paths to treat as unchanged.

Results

• detailedDiff: the detailed diff between the resource’s actual and desired state.

• deleteBeforeReplace: if true, the resource must be deleted before it is recreated. This flag is ignored if
detailedDiff does not indicate that the resource needs to be replaced.

• changes: an enumeration that indicates whether the provider detected any changes, detected no changes, or
does not support detailed diff detection. Providers should return Some for this value if there are any entries in
detailedDiff; otherwise they should return None to indicate no difference. If a provider returns Unknown for
this value, it is the responsibility of the client to determine whether or not differences exist by comparing the
resource’s last recorded inputs with its current inputs.

In addition, the following properties should be returned for compatibility with older clients:

• replaceKeys: the list of top-level input property names with changes that require that the resource be replaced.

• stableKeys: the list of top-level input property names that did not change and top-level output properties that
are guaranteed not to change.

• changedKeys: the list of top-level input property names that changed.

If a provider is unable to compute a diff because its configuration contained Unknowns, it can return an error that
indicates as such. The client should conservatively assume that the resource must be updated and warn the user.

Detailed Diffs

A detailed diff is a map from property paths to change kinds that describes the differences between the actual and
desired state of a resource and the operations necessary to reconcile the two.

Each entry in a detailed diff has a change kind that describes how the value of and input property differs, whether or
not the difference requires replacement, and which old value was used for determining the difference. The core change
kinds are:

• Add, which denotes an Object property or Array element that was added

• Update, which denotes an Object property or Array element that was updated

• Delete, which denotes an Object property or Array element that was removed

Each of these core kinds is paramaterized on whether or not the change requires replacement and whether the old value
of the property should was read from the resource’s old input Object or old state Object.

TODO: the input/output flag is a bit clumsy, as it is the only part of the system that implies some correspondence
between input and output Object schemas. It was chosen over an approach that used old/new values due in order to

44 Chapter 6. Resource Provider Implementer’s Guide

Pulumi

remove the possibility of a provider accidentally revealing a secret value as part of a diff. We should reconsider this
approach if we can find an easy way to maintain secretness.

Create

The Create method is responsible for creating a new instance of a resource from an input Object and returning the
resource’s state Object. Create may be called during a preview in order to compute a hypothetical state Object
without actually creating the resource, in which case the preview argument will be true.

Parameters

• urn: the URN of the resource.

• news: the input Object for the resource. This value must have been generated by a prior call to Check. If
preview is true, this value may contain Unknown value; otherwise, it is guaranteed to be fully-known.

• timeout: the timeout for the create operation. If this value is 0, the provider should apply the default creation
timeout for the resource.

• preview: if true, the provider should calculate the state Object as accurately as it is able without actually
creating the resource. Top-level properties that are present in the resource’s schema but are omitted from its state
Object should be treated as having the value Unknown. Nested properties with values that are not computable
must be explicitly set to Unknown. If it is not possible to guarantee that the value produced by a preview will
match the value that would be produced by actually creating the resource, the value should be left unknown.

Results

• id: the ID for the created resource. If preview is true, this value will be ignored.

• state: the new state Object for the resource. If preview is true, this value may contain Unknowns.

Update

The Update method is responsible for updating a resource in-place in order given its last recorded state Object and
current input Object. Update may be called during a preview in order to compute a hypothetical state Object without
actually updating the resource, in which case the preview argument will be true.

Parameters

• urn: the URN of the resource.

• id: the ID of the resource.

• olds: the last recorded state Object for the resource. This Object must have been generated by a call to
Create, Read, or Update.

• news: the input Object for the resource. This value must have been generated by a prior call to Check. If
preview is true, this value may contain Unknown value; otherwise, it is guaranteed to be fully-known.

• timeout: the timeout for the update operation. If this value is 0, the provider should apply the default update
timeout for the resource.

• ignoreChanges: the set of property paths to treat as unchanged.

6.4. Custom Resource Lifecycle 45

Pulumi

• preview: if true, the provider should calculate the state Object as accurately as it is able without actually
updating the resource. Top-level properties that are present in the resource’s schema but are omitted from its state
Object should be treated as having the value Unknown. Nested properties with values that are not computable
must be explicitly set to Unknown. If it is not possible to guarantee that the value produced by a preview will
match the value that would be produced by actually updating the resource, the value should be left unknown.

Results

• state: the new state Object for the resource. If preview is true, this value may contain Unknowns.

Read

The Read method is responsible for reading the current inputs and state Objects for a resource. Read may be called
during a refresh or import of a managed resource or during a preview or update for an external resource.

Parameters

• urn: the URN of the resource.

• id: the ID of the resource.

• inputs: the last recoded input Object for the resource, if any. If present, this Object must have been generated
by a call to Check or Read. This parameter is omitted if the resource is being imported.

• state: the last recorded state Object for the resource, if any. This Object must have been generated by a call
to Create, Read, or Update. This property is only present during a refresh, and must not be required for a
resource to support importing.

Results

• newInputs: the new input Object for the resource. If the provider does not support detailed diffs, these inputs
may be used by the engine to determine whether or not the resource’s actual state differs from its desired state
during the next preview or update. The shape of the returned Object should be compatible with the resource’s
schema. If the resource is being imported, an input Objectmust be returned. Otherwise, unless the input Object
is used for computing default property values or the provider does not support detailed diffs, newInputs should
simply reflect the value of inputs.

• newState: the new state Object for the resource.

Delete

The Delete method is responsible for deleting a resource given its ID and state Object.

46 Chapter 6. Resource Provider Implementer’s Guide

Pulumi

Parameters

• urn: the URN of the resource.

• id: the ID of the resource.

• state: the last recorded state Object for the resource. This Object must have been generated by a call to
Create, Read, or Update.

• timeout: the timeout for the delete operation. If this value is 0, the provider should apply the default deletion
timeout for the resource.

Results

None.

6.5 Component Resource Lifecycle

• TODO: user-level programming model

6.5.1 Construct

• TODO: brief, parameters, results, etc.

6.6 Provider Functions

6.6.1 Invoke

• TODO

6.6.2 StreamInvoke

• TODO

6.7 CLI Scenarios

• TODO:

– preview

– update

– import

– refresh

– destroy

6.5. Component Resource Lifecycle 47

Pulumi

6.7.1 Preview

• TODO:

– check

– diff

– create/update preview, read operation

6.7.2 Update

• TODO:

– check

– diff

– create/update/read/delete operation

6.7.3 Import

• TODO: read operation

6.7.4 Refresh

• TODO: read operations

6.7.5 Destroy

• TODO: delete operation

6.8 Appendix

6.8.1 Out-of-Process Plugin Lifecycle

6.8.2 gRPC Interface

• TODO:

– feature negotiation

– data representation

48 Chapter 6. Resource Provider Implementer’s Guide

CHAPTER

SEVEN

PULUMI PACKAGE METASCHEMA

A description of the schema for a Pulumi Package

object

7.1 Properties

7.1.1 attribution

Freeform text attribution of derived work, if required.

string

7.1.2 config

The package’s configuration variables.

object

Properties

required

A list of the names of the package’s required configuration variables.

array

Items: string

49

Pulumi

variables

A map from variable name to propertySpec that describes a package’s configuration variables.

object

Additional properties: Property Definition

7.1.3 description

The description of the package. Descriptions are interpreted as Markdown.

string

7.1.4 displayName

The human-friendly name of the package.

string

7.1.5 functions

A map from token to functionSpec that describes the set of functions defined by this package.

object

Property names: Token

Additional properties: Function Definition

7.1.6 homepage

The package’s homepage.

string

7.1.7 keywords

The list of keywords that are associated with the package, if any.

array

Items: string

50 Chapter 7. Pulumi Package Metaschema

Pulumi

7.1.8 language

Additional language-specific data about the package.

object

7.1.9 license

The name of the license used for the package’s contents.

string

7.1.10 logoUrl

The URL of the package’s logo, if any.

string

7.1.11 meta

Format metadata about this package.

object

Properties

moduleFormat (required)

A regex that is used by the importer to extract a module name from the module portion of a type token. Pack-
ages that use the module format “namespace1/namespace2/. . . /namespaceN” do not need to specify a format. The
regex must define one capturing group that contains the module name, which must be formatted as “names-
pace1/namespace2/. . . namespaceN”.

string

Format: regex

7.1. Properties 51

Pulumi

7.1.12 name (required)

The unqualified name of the package (e.g. “aws”, “azure”, “gcp”, “kubernetes”, “random”)

string

Pattern: ^[a-zA-Z][-a-zA-Z0-9_]*$

7.1.13 pluginDownloadUrl

The URL to use when downloading the provider plugin binary.

string

7.1.14 provider

The provider type for this package.

Resource Definition

7.1.15 publisher

The name of the person or organization that authored and published the package.

string

7.1.16 repository

The URL at which the package’s sources can be found.

string

7.1.17 resources

A map from type token to resourceSpec that describes the set of resources and components defined by this package.

object

Property names: Token

Additional properties: Resource Definition

52 Chapter 7. Pulumi Package Metaschema

Pulumi

7.1.18 types

A map from type token to complexTypeSpec that describes the set of complex types (i.e. object, enum) defined by this
package.

object

Property names: Token

Additional properties: Type Definition

7.1.19 version

The version of the package. The version must be valid semver.

string

Pattern: ^v?(?P<major>0|[1-9]\d*)\.(?P<minor>0|[1-9]\d*)\.(?P<patch>0|[1-9]\d*)(?
:-(?P<prerelease>(?:0|[1-9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-]*)(?:\.(?:0|[1-9]\d*|\
d*[a-zA-Z-][0-9a-zA-Z-]*))*))?(?:\+(?P<buildmetadata>[0-9a-zA-Z-]+(?:\.[0-9a-zA-Z-]+)*))?
$

7.2 Alias Definition

object

7.2.1 Properties

name

The name portion of the alias, if any

string

project

The project portion of the alias, if any

string

7.2. Alias Definition 53

Pulumi

type

The type portion of the alias, if any

string

7.3 Array Type

A reference to an array type. The “type” property must be set to “array” and the “items” property must be present. No
other properties may be present.

object

7.3.1 Properties

items (required)

The element type of the array

Type Reference

type (required)

Constant: "array"

7.4 Enum Type Definition

Describes an enum type

object

7.4.1 Properties

enum (required)

The list of possible values for the enum

array

Items: Enum Value Definition

54 Chapter 7. Pulumi Package Metaschema

Pulumi

type (required)

The underlying primitive type of the enum

string

Enum: "boolean" | "integer" | "number" | "string"

7.5 Enum Value Definition

object

7.5.1 Properties

deprecationMessage

Indicates whether the value is deprecated.

string

description

The description of the enum value, if any. Interpreted as Markdown.

string

name

If present, overrides the name of the enum value that would usually be derived from the value.

string

value (required)

The enum value itself

boolean | integer | number | string

7.5. Enum Value Definition 55

Pulumi

7.6 Function Definition

Describes a function.

object

7.6.1 Properties

deprecationMessage

Indicates whether the function is deprecated

string

description

The description of the function, if any. Interpreted as Markdown.

string

inputs

The bag of input values for the function, if any.

Object Type Details

isOverlay

Indicates that the implementation of the function should not be generated from the schema, and is instead provided
out-of-band by the package author

boolean

language

Additional language-specific data about the function.

object

56 Chapter 7. Pulumi Package Metaschema

Pulumi

outputs

The bag of output values for the function, if any.

Object Type Details

7.7 Map Type

A reference to a map type. The “type” property must be set to “object” and the “additionalProperties” property may
be present. No other properties may be present.

object

7.7.1 Properties

additionalProperties

The element type of the map. Defaults to “string” when omitted.

Type Reference

type (required)

Constant: "object"

7.8 Named Type

A reference to a type in this or another document. The “$ref” property must be present. The “type” property is ignored
if it is present. No other properties may be present.

object

7.8.1 Properties

$ref (required)

The URI of the referenced type. For example, the built-in Archive, Asset, and Any types are refer-
enced as “pulumi.json#/Archive”, “pulumi.json#/Asset”, and “pulumi.json#/Any”, respectively. A type
from this document is referenced as “#/types/pulumi:type:token”. A type from another document is ref-
erenced as “path#/types/pulumi:type:token”, where path is of the form: “/provider/vX.Y.Z/schema.json”
or “pulumi.json” or “http[s]://example.com/provider/vX.Y.Z/schema.json” A resource from this document

7.7. Map Type 57

Pulumi

is referenced as “#/resources/pulumi:type:token”. A resource from another document is referenced as
“path#/resources/pulumi:type:token”, where path is of the form: “/provider/vX.Y.Z/schema.json” or “pulumi.json” or
“http[s]://example.com/provider/vX.Y.Z/schema.json”

string

Format: uri-reference

type

ignored; present for compatibility with existing schemas

string

7.9 Object Type Definition

object

All of:

• Object Type Details

7.9.1 Properties

type

Constant: "object"

7.10 Object Type Details

Describes an object type

object

7.10.1 Properties

properties

A map from property name to propertySpec that describes the object’s properties.

object

Additional properties: Property Definition

58 Chapter 7. Pulumi Package Metaschema

Pulumi

required

A list of the names of an object type’s required properties. These properties must be set for inputs and will always be
set for outputs.

array

Items: string

7.11 Primitive Type

A reference to a primitive type. A primitive type must have only the “type” property set.

object

7.11.1 Properties

type (required)

The primitive type, if any

string

Enum: "boolean" | "integer" | "number" | "string"

7.12 Property Definition

Describes an object or resource property

object

All of:

• Type Reference

7.12.1 Properties

const

The constant value for the property, if any. The type of the value must be assignable to the type of the property.

boolean | number | string

7.11. Primitive Type 59

Pulumi

default

The default value for the property, if any. The type of the value must be assignable to the type of the property.

boolean | number | string

defaultInfo

Additional information about the property’s default value, if any.

object

Properties

environment (required)

A set of environment variables to probe for a default value.

array

Items: string

language

Additional language-specific data about the default value.

object

deprecationMessage

Indicates whether the property is deprecated

string

description

The description of the property, if any. Interpreted as Markdown.

string

60 Chapter 7. Pulumi Package Metaschema

Pulumi

language

Additional language-specific data about the property.

object

replaceOnChanges

Specifies whether a change to the property causes its containing resource to be replaced instead of updated (default
false).

boolean

willReplaceOnChanges

Indicates that the provider will replace the resource when this property is changed.

boolean

secret

Specifies whether the property is secret (default false).

boolean

7.13 Resource Definition

Describes a resource or component.

object

All of:

• Object Type Details

7.13.1 Properties

aliases

The list of aliases for the resource.

array

Items: Alias Definition

7.13. Resource Definition 61

Pulumi

deprecationMessage

Indicates whether the resource is deprecated

string

description

The description of the resource, if any. Interpreted as Markdown.

string

inputProperties

A map from property name to propertySpec that describes the resource’s input properties.

object

Additional properties: Property Definition

isComponent

Indicates whether the resource is a component.

boolean

isOverlay

Indicates that the implementation of the resource should not be generated from the schema, and is instead provided
out-of-band by the package author

boolean

methods

A map from method name to function token that describes the resource’s method set.

object

Additional properties: string

62 Chapter 7. Pulumi Package Metaschema

Pulumi

requiredInputs

A list of the names of the resource’s required input properties.

array

Items: string

stateInputs

An optional objectTypeSpec that describes additional inputs that mau be necessary to get an existing resource. If this
is unset, only an ID is necessary.

Object Type Details

7.14 Token

string

Pattern: ^[a-zA-Z][-a-zA-Z0-9_]*:([^0-9][a-zA-Z0-9._/-]*)?:[^0-9][a-zA-Z0-9._/]*$

7.15 Type Definition

Describes an object or enum type.

object

One of:

7.15.1 Properties

description

The description of the type, if any. Interpreted as Markdown.

string

isOverlay

Indicates that the implementation of the type should not be generated from the schema, and is instead provided out-of-
band by the package author

boolean

7.14. Token 63

Pulumi

language

Additional language-specific data about the type.

object

7.16 Type Reference

A reference to a type. The particular kind of type referenced is determined based on the contents of the “type” property
and the presence or absence of the “additionalProperties”, “items”, “oneOf”, and “$ref” properties.

object

One of:

7.16.1 Properties

plain

Indicates that when used as an input, this type does not accept eventual values.

boolean

7.17 Union Type

A reference to a union type. The “oneOf” property must be present. The union may additional specify an underlying
primitive type via the “type” property and a discriminator via the “discriminator” property. No other properties may
be present.

object

7.17.1 Properties

discriminator

Informs the consumer of an alternative schema based on the value associated with it

object

64 Chapter 7. Pulumi Package Metaschema

Pulumi

Properties

mapping

an optional object to hold mappings between payload values and schema names or references

object

Additional properties: string

propertyName (required)

PropertyName is the name of the property in the payload that will hold the discriminator value

string

oneOf (required)

If present, indicates that values of the type may be one of any of the listed types

array

Items: Type Reference

type

The underlying primitive type of the union, if any

string

Enum: "boolean" | "integer" | "number" | "string"

7.17. Union Type 65

Pulumi

66 Chapter 7. Pulumi Package Metaschema

CHAPTER

EIGHT

BUILDING THE DOCS

This documentation is generated using Sphinx and authored in Markdown. Markdown support for Sphinx is provided
by MyST. MyST provides a number of small syntax extensions to support declaring ReStructuredText directives; see
the MyST syntax guide for details.

In order to build the devloper documentation:

1. Install PlantUML. On macOS, this can be done via brew install plantuml.

2. Install the requirements for Sphinx:

$ pip install requirements.txt

3. Run make to build the HTML documentation:

$ make

This will regenerate any out-of-date SVGs and build the a local version of the HTML documentation. The documen-
tation can also be built from the repository root by running make developer_docs.

Note that Sphinx doesn’t do a great job of rebuilding output files if only the table-of-contents has changed. If you
change the table of contents, you may need to clean the output directory in order to see the effects of your changes:

```bash
$ make clean
```

8.1 Notes on Style

• Do use appropriate links wherever possible. Learn to use header anchors.

• If a particular link destination is referenced multiple times, prefer shortcut reference links.

67

https://www.sphinx-doc.org/en/master/index.html
https://www.sphinx-doc.org/en/master/index.html
https://myst-parser.readthedocs.io/en/latest/index.html
https://myst-parser.readthedocs.io/en/latest/index.html
https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html
https://plantuml.com
https://www.sphinx-doc.org/en/master/index.html
https://myst-parser.readthedocs.io/en/latest/syntax/optional.html#auto-generated-header-anchors
https://spec.commonmark.org/0.29/#shortcut-reference-link

	Pulumi Architecture Overview
	The Deployment Engine
	State Storage Backends
	Language SDKs
	Resource Providers
	Package Schemas and Code Generators

	Resource Registration
	The Resource Monitor
	Default Providers

	The Step Generator
	Resource Diffing
	Dependent Replacements

	The Step Executor
	Example Resource Registration Sequences
	Custom Resources
	Create
	Update
	Replace
	Delete-before-replace
	Import
	No change

	Multi-language Components

	Deployment Schema
	Pulumi Deployment States
	Properties
	deployment (required)
	version (required)

	Deployment Manifest
	Properties
	magic (required)
	plugins
	time (required)
	version (required)

	Plugin Info
	Properties
	name (required)
	path (required)
	type (required)
	version (required)

	Resource Operation V2
	Properties
	resource (required)
	type (required)

	Secrets Provider
	Properties
	state
	type (required)

	Unknown Version
	Properties
	deployment
	version

	Version 3
	Properties
	deployment (required)
	Properties

	version (required)

	Pulumi Property Value
	Archive property values
	Properties
	4dabf18193072939515e22adb298388d (required)
	hash

	Array property values
	Asset property values
	Properties
	4dabf18193072939515e22adb298388d (required)
	hash

	Decrypted Secret
	Properties
	plaintext (required)

	Encrypted Secret
	Properties
	ciphertext (required)

	Hash-only Archive
	Hash-only Asset
	Literal Archive
	Properties
	assets (required)

	Literal Asset
	Properties
	text (required)

	Local File Archive
	Properties
	path (required)

	Local File Asset
	Properties
	path (required)

	Object property values
	Primitive property values
	Pulumi Property Value
	Resource reference property values
	Properties
	4dabf18193072939515e22adb298388d (required)
	id
	packageVersion
	urn (required)

	Secret Property Values
	Properties
	4dabf18193072939515e22adb298388d (required)

	URI File Archive
	Properties
	uri (required)

	URI File Asset
	Properties
	uri (required)

	Unknown property values
	https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/property-values.json#/oneOf/5/oneOf/1/properties/assets/additionalProperties

	Pulumi Resource State
	Resource V3
	Properties
	additionalSecretOutputs
	aliases
	custom
	customTimeouts
	delete
	dependencies
	external
	id
	importID
	initErrors
	inputs
	outputs
	parent
	pendingReplacement
	propertyDependencies
	protect
	provider
	type
	urn (required)

	Unique Resource Name (URN)
	https://github.com/pulumi/pulumi/blob/master/sdk/go/common/apitype/resources.json#/$defs/resourceV3/properties/propertyDependencies/additionalProperties

	Pulumi Type System
	Primitive Types
	Assets and Archives
	Resource References

	Object Types
	Promise<T>
	Output<T>
	Dependencies
	Unknowns
	Secrets

	Input<T>
	inputShape(T)
	outputShape(T)
	plainShape(T)
	Output<T> Combinators
	apply<T, U>(v: Output<T>, f: (T) => U): Output<U>
	unwrap<T>(v: Output<Output<T>>): Output<T>
	all<T0 ... TN>(t0: Output<T0>, ... tn: Output<TN>): Output<plainShape(Tuple<T0 ... TN>)>

	Importing Resources
	import resource option
	Technical Note

	pulumi import
	Challenges

	Resource Provider Implementer’s Guide
	Provider Programming Model
	Resources
	URNs
	Custom Resources
	Component Resources

	Functions
	Data Exchange Types
	Assets and Archives
	Resource References
	Unknowns
	Secrets
	Property Paths

	Schema
	Provider Lifecycle
	Lookup
	Configuration
	CheckConfig
	DiffConfig
	Configure
	Parameters
	Results

	Shutdown

	Custom Resource Lifecycle
	Lifecycle Methods
	Check
	Parameters
	Results

	Diff
	Parameters
	Results

	Detailed Diffs
	Create
	Parameters
	Results

	Update
	Parameters
	Results

	Read
	Parameters
	Results

	Delete
	Parameters
	Results

	Component Resource Lifecycle
	Construct

	Provider Functions
	Invoke
	StreamInvoke

	CLI Scenarios
	Preview
	Update
	Import
	Refresh
	Destroy

	Appendix
	Out-of-Process Plugin Lifecycle
	gRPC Interface

	Pulumi Package Metaschema
	Properties
	attribution
	config
	Properties
	required
	variables

	description
	displayName
	functions
	homepage
	keywords
	language
	license
	logoUrl
	meta
	Properties
	moduleFormat (required)

	name (required)
	pluginDownloadUrl
	provider
	publisher
	repository
	resources
	types
	version

	Alias Definition
	Properties
	name
	project
	type

	Array Type
	Properties
	items (required)
	type (required)

	Enum Type Definition
	Properties
	enum (required)
	type (required)

	Enum Value Definition
	Properties
	deprecationMessage
	description
	name
	value (required)

	Function Definition
	Properties
	deprecationMessage
	description
	inputs
	isOverlay
	language
	outputs

	Map Type
	Properties
	additionalProperties
	type (required)

	Named Type
	Properties
	$ref (required)
	type

	Object Type Definition
	Properties
	type

	Object Type Details
	Properties
	properties
	required

	Primitive Type
	Properties
	type (required)

	Property Definition
	Properties
	const
	default
	defaultInfo
	Properties
	environment (required)
	language

	deprecationMessage
	description
	language
	replaceOnChanges
	willReplaceOnChanges
	secret

	Resource Definition
	Properties
	aliases
	deprecationMessage
	description
	inputProperties
	isComponent
	isOverlay
	methods
	requiredInputs
	stateInputs

	Token
	Type Definition
	Properties
	description
	isOverlay
	language

	Type Reference
	Properties
	plain

	Union Type
	Properties
	discriminator
	Properties
	mapping
	propertyName (required)

	oneOf (required)
	type

	Building the Docs
	Notes on Style

